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Abstract. This review surveys a number of common model selection algorithms
(MSAs), discusses how they relate to each other and identifies factors that
explain their relative performances. At the heart of MSA performance is the
trade-off between type I and type II errors. Some relevant variables will be
mistakenly excluded, and some irrelevant variables will be retained by chance. A
successful MSA will find the optimal trade-off between the two types of errors
for a given data environment. Whether a given MSA will be successful in a
given environment depends on the relative costs of these two types of errors. We
use Monte Carlo experimentation to illustrate these issues. We confirm that no
MSA does best in all circumstances. Even the worst MSA in terms of overall
performance – the strategy of including all candidate variables – sometimes
performs best (viz., when all candidate variables are relevant). We also show
how (1) the ratio of relevant to total candidate variables and (2) data-generating
process noise affect relative MSA performance. Finally, we discuss a number of
issues complicating the task of MSAs in producing reliable coefficient estimates.
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1. Introduction

When modelling economic phenomena there is a great deal of uncertainty regarding
which variables to include, what functional form is appropriate, what lag length
captures dynamic responses, whether there are non-stationarities such as unit roots
or structural breaks, etc. Economic theory informs the model specification, but
there are aspects that must be data based.
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2 CASTLE ET AL.

In practice, many empirical papers report results based on an ad hoc selection
procedure, trying many specifications and selecting the ‘best’. Without some
objective model selection algorithm, non-systematic efforts may, at best, innocently
miss superior specifications, or, at worst, strategically select results to support the
researcher’s preconceived biases. A substantial literature demonstrates that model
selection matters. For example, many studies of economic growth find that results
that are economically and statistically significant in one study are not robust to
alternative specifications (cf. Levine and Renelt, 1992; Fernandez et al., 2001;
Hendry and Krolzig 2004; Hoover and Perez; 2004; Sala-i-Martin et al., 2004). For
these and related reasons, there is interest in automated model selection algorithms
(MSAs) that can point researchers to the best model specification (Oxley, 1995;
Phillips, 2005).

MSAs are designed with different goals in mind. These include selecting a
model or models that (1) best represent the true data-generating process (DGP), (2)
have desirable inference properties and (3) are best able to forecast out-of-sample
observations. The main focus of this review is the estimation of model coefficients.
We do not address estimation of coefficient standard errors. As is well known,
procedures that produce accurate coefficient estimates do not necessarily produce
accurate standard errors (Reed and Ye, 2011). Accordingly, our paper focuses on the
performance of MSAs with respect to producing reliable coefficient estimates. We
restrict our review to algorithms that can be easily automated to ensure transparency
and replicability.

Although the list of MSAs available for use in applied work is large, there are
few studies that compare MSA performance. This review provides a conceptual
framework for comparing different types of MSAs. We then conduct an empirical
review of these MSAs in a simple data environment to illustrate determinants of
relative performance associated with coefficient estimation. Monte Carlo simulation
is employed because MSAs are often complex and not amenable to theoretical
analysis, especially with respect to their finite sample properties. In so doing, we
address Owen’s (2003, p. 622) call for evidence on the head-to-head performance
of rival model selection methods. We then identify some challenging issues for
MSAs that have been only partially addressed in the literature.

2. Competing Model Selection Algorithms

2.1 The Data-Generating Process

The framework that is commonly taken as a starting point for MSAs is one in which
there is a well-defined DGP that can be consistently estimated.1 The researcher has
a set of J candidate variables (x = x1, x2, . . . , xJ) from which a model or models
are selected. The DGP is given by:

yt = γ +
P∑

i=0

J∑
j=1

βi j x j,t−i + εt , t = 1, 2, . . . ,T (1)
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where there are L = PJ regressors (excluding the intercept) with the xj,t−i including
lagged and nonlinear transformations of regressors such as interaction terms and
polynomials.2 A subset K of the regressors are ‘relevant’, defined by non-zero
β’s, with the remaining L-K coefficients equal to zero, 0 ≤ K ≤ L. The εt are
independently and identically distributed (i.i.d.), with εt ∼ IN(0, σ 2).

This review excludes selection algorithms over models that are nonlinear in
the parameters, or that have non-spherical errors, to focus on standard estimation
procedures. Further, we assume that many of the key difficulties in modelling are
known. Namely, we assume that the data are accurately measured over the sample
period, the initial specification nests the DGP, the parameters are constant, there
are no unmodelled structural breaks and conditioning on the set of regressors x is
valid.

Given the setup described above, there are 2L possible variable combinations,
each constituting a separate model. The researcher’s task is to choose the model,
or models, that produce the most reliable coefficient estimates.3 This leads to the
large literature on automated MSAs.

2.2 Consistency and Asymptotic Efficiency

Goodness of fit and model selection are closely related. However, there are well-
known pitfalls associated with choosing models based solely on goodness of fit
(Dhrymes, 1970; Pesaran, 1974). For example, an MSA that chooses the model
with the highest R2 value will always select the specification containing all L
variables.

Two widely employed properties for evaluating model selection are (1)
consistency (Hannan, 1980) and (2) asymptotic efficiency (Shibata, 1980, 1981).
Consider the case when the true model is one of the candidate models being
evaluated by the MSA. An MSA is said to be consistent if it chooses the
true model with probability one as the sample size increases to infinity.
Alternatively, suppose the true model is not among the set of candidate models.
An MSA is said to be asymptotically efficient if it selects the model having
the smallest expected prediction error with probability approaching one as the
sample size increases (Kuha, 2004). The two criteria correspond to different
objectives.

Both criteria are asymptotic, and the finite sample behaviour of MSAs may differ
significantly from their asymptotic optimality properties. The preferred asymptotic
criterion will depend on the researcher’s view of the DGP. If the DGP is thought
to be infinitely complicated or comprises latent variables, then efficiency would be
preferred (the concept was introduced in the context of infinite autoregressive
processes, Shibata, 1980, later extended to linear regression models, Shibata,
1981). In contrast, if the DGP is thought to comprise observables that are nested
within the model then consistency should be the chosen criterion (McQuarrie and
Tsai, 1998).
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2.3 SIC, AIC and Related Information Criteria MSAs

Two MSAs that receive considerable attention are based on information criteria
(IC): the Schwarz information criterion (SIC, Schwarz, 1978) and the Akaike
information criterion (AIC, Akaike 1973). Both the AIC and the SIC have the same
general form: ln(σ̂ 2) + Penalty, where σ̂ 2 is the maximum-likelihood estimate of
the variance of the error term for a given specification, and Penalty is a function
that monotonically increases in the number of coefficients to be estimated.

If we assume that: (1) there are no data measurement errors; (2) the set of L
regressors nests the DGP specification, including any nonlinear and interaction
effects; (3) the parameters of the DGP are constant and there are no unmodelled
structural breaks and (4) conditioning on the set of regressors x is valid, then the
SIC and AIC are consistent and asymptotically efficient, respectively. Assumption
(2) is fundamental here; if the DGP is infinite dimensional then AIC provides an
asymptotically efficient selection of a finite dimensional approximating model.

It is well known that both the SIC and AIC tend to ‘overfit’ (i.e. include more
variables than the DGP) in small samples. As a result, small-sample corrections
for these have been developed by Hurvich and Tsai (1989) and McQuarrie (1999).
These are denoted by SICc and AICc, respectively. These corrections adjust the
penalty functions to include an additional argument for sample size, correcting
the second-order bias. They are asymptotically equivalent to their uncorrected
namesakes.

A number of other IC MSAs are related to either the SIC or the AIC. These also
follow the same general form: ln(σ̂ 2)+ Penalty. Hannan and Quinn’s (1979) HQ IC
was developed as a consistent model selection criterion in response to AIC. HQ is
asymptotically equivalent to SIC, though Monte Carlo experimentation by Hannan
and Quinn (1979) suggests that HQ performs better than SIC in large samples
when selecting the order for an autoregressive model. The key difference with SIC
is that the penalty function decreases faster, resulting in the minimum rate at which
additional parameters must be penalized in order to still ensure consistency.

Akaike’s final prediction error criterion (Akaike, 1969), which preceded Akaike’s
AIC, computes the mean square prediction error when a model fitted to in-
sample data is fitted to another independent observation. The model within the
candidate set which has the smallest prediction error is chosen. If the objective
of modelling is not prediction, then AIC (an in-sample criterion) is preferred.
Similarly, Mallows’ Cp (Mallows, 1973) uses a penalized mean square prediction
error, and is asymptotically equivalent to the AIC. The Cp criterion is often used as
a stopping rule for stepwise regression. The key difference between goodness-of-fit
measures and ICs is that the latter measure the distance between the selected model
and the true model using the Kullback–Leibler distance. As the adjusted R-squared
criterion does not assume a ‘true model’ to compare to the selected model, it is
neither consistent nor asymptotically efficient, and is therefore not asymptotically
related to either the SIC or the AIC.

One noteworthy variant of IC MSAs is the informational complexity criterion
of Bozdogan (2000). Like other IC MSAs, informational complexity includes a
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goodness-of-fit element and a function that penalizes the inclusion of additional
parameters. However, it also adds a third component that takes into account
interdependencies of model parameter estimates and dependencies of model
residuals. There are yet other variants of IC MSAs. For further discussions, see
Gouriéroux and Monfort, (1995, section 2.3), Amemiya (1980), Chow (1981) and
Phillips (1994, 1995).

Model selection using the AIC, SIC and related IC MSAs consists of estimating
all possible models and then choosing the single best model (for example, the single
model with the smallest IC value). The estimated coefficients from this ‘single best
model’ then become the ‘final’ coefficient estimates for use in policy analysis. If a
variable is not included in the single best model, then the associated coefficient is
‘estimated’ to be zero.

2.4 Portfolio Selection

All of the MSAs above involve selection of a single best model based on a sample
IC value. However, these sample IC values are themselves random variables. Under
certain conditions, the distribution of these measures can be calculated. This has
led some researchers to advocate choosing a set of models, rather than a single
best model. For example, Mallows (1973) advocates plotting the Cp measure for
individual models against the number of explanatory variables in the model to
choose a best subset of models.

Poskitt and Tremayne (1987) derive a measure based on the posterior odds ratio,
�m = exp[− 1

2 (ICmin − ICm)], where ICmin is the minimum IC value among all 2L

models, and ICm is the value of the respective IC in model m, m = 1,2, . . . ,
2L. They argue that a �mvalue greater than 100 is decisive evidence that the
competing model should be discarded. If

√
10 < �m ≤ 10, there is ‘no substantial

evidence’ in favour of the model minimizing the IC. And if 1 < �m <
√

10, then
the alternative model is said to be a ‘close competitor’ to the IC-minimizing model.4

They suggest forming a portfolio of all models having �m ≤ √
10. Jeffreys (1961,

p. 432) notes that �m is used to grade the decisiveness of the evidence and has no
physical meaning. Hence, the intervals are rules of thumb rather than based on any
optimality properties.

Burnham and Anderson (2004) present a somewhat different set of recommenda-
tions. They categorize models as follows: (1) �m < 2 indicates that the competing
model has ‘substantial support’; (2) 4 < �m < 7 indicates that the model has
‘considerably less support’ and (3) �m > 10 indicates that the model has ‘no
support’. These rough guidelines have similar counterparts in the Bayesian literature
(e.g. Raftery, 1996). Less clear is how the respective models should be combined
to obtain a single coefficient estimate.

2.5 Path Reduction MSAs

One problem with the previous MSAs is that they require all possible models
to be estimated. When the number of candidate variables is large, this becomes
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computationally unfeasible. This has led to MSAs that use various strategies
to reduce the number of models to be compared. Four very common path
reduction MSAs are backward selection, backward stepwise, forward selection
and forward-stepwise (FW) model searches. Backward (forward) selection MSAs
work by sequentially dropping (adding) variables one by one according to a
specified significance criterion. Backward-stepwise (forward-stepwise) MSAs allow
previously discarded variables to be added back into the model (previously included
variables to be removed from the model). The cost of not estimating all paths is
that superior specifications may be undetected.

An alternative type of path reduction strategy consists of dividing the set of all
possible models into various subsets. By judiciously constructing the subsets, one
can avoid estimating large swaths of the regression tree and still obtain the optimal
IC model (such as SIC and AIC). These MSAs are commonly called ‘branch and
bound’ MSAs (Hocking and Leslie, 1967; Gatu and Kontoghiorghes, 2006). Other
algorithms proposed to undertake exhaustive searches include Schatzoff, Tsao and
Fienberg (1968) and Furnival (1971).

The logic of these path reduction strategies can best be illustrated if we think
in terms of R2. Suppose there are 10 candidate variables and we wish to find the
three-variable model with the highest R2. An inefficient strategy is to estimate all
120 possible, three-variable models. However, if we compare the model {1,2,3}
and find that it has a higher R2 than model {1,2,4,5,6,7,8,9,10}, then we know
that model {1,2,3} has a higher R2 than the models {1,2,4}, {1,2,5}, . . . {1,2,10}.
Thus, judicious selection of models with more than three variables can reduce the
number of three-variable models that need to be searched. Although this example
is in terms of R2, the logic applies directly to searching for models with minimum
IC values. Unlike the backward and forward MSAs described above, branch and
bound MSAs are able to achieve the best IC model without estimating all possible
models.

Yet another variant of a path reduction strategy is general-to-specific model
selection. This technique, which simplifies a general model that captures the salient
characteristics of the data, has a long history and has been known as the LSE
approach due to its proponents at the London School of Economics in the 1960s.
Hendry (2003) discusses the origins of the LSE methodology and Mizon (1995)
provides a history. See inter alia, Anderson (1962), Pagan (1987), Phillips (1988)
and Campos et al. (2005) for reviews.

The latest generation of general-to-specific automatic model selection is
embodied in Autometrics within the software package PcGive (Doornik, 2007,
2009a; Hendry and Doornik, 2009). Autometrics undertakes a multi-path tree
search, commencing from the general model with all potential variables. It
eliminates insignificant variables while ensuring a set of pre-specified diagnostic
tests are satisfied in the reduction procedure by checking the subsequent reductions
with encompassing tests.

As noted above, the desirable properties of IC such as the AIC and SIC require
the validity of a number of assumptions. If these assumptions are not satisfied,
these MSAs will select misspecified models. Autometrics refines the path reduction
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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algorithm by eliminating branches of the regression tree that violate underlying
assumptions of the DGP (e.g. non-spherical errors). Multi-path reductions are
undertaken to avoid path dependence and either a single best model is found or
competing models are retained. The latter are then evaluated using encompassing
tests (Doornik, 2008) to result in a final model. If a variable is not included
in the single best model, then the associated coefficient is estimated to be
zero.

2.6 Bayesian Model Averaging

Bayesian model averaging (BMA) MSAs employ a different conceptual framework
than MSAs that select a single best model or portfolio of models, see, for example,
Hoeting et al. (1999). Rather than assuming each model is ‘true’, and then
comparing model diagnostics (such as IC) to select the best model or models,
BMA estimates all models, attaching a posterior probability that any given model
is the DGP. The final coefficient estimate for a given variable is calculated using
a weighted average of individual coefficient estimates for that variable across all
models, with individual coefficient estimates being weighted by their posterior
model probabilities.

Strictly speaking, BMA is not a model selection tool; it is an estimation method.
The appeal of BMA MSAs is that they are claimed to directly address model
uncertainty by basing estimates on a weighted average over the model space, which
accounts for uncertainty in both predictions and parameter estimates, see Hoeting
(2002). Bayesian models require the specification of prior model probabilities, as
well as prior distributions for the parameters.

A drawback of BMA models is that – like IC MSAs – they require estimation
of all models. In practice, sophisticated sampling algorithms are employed to make
BMA MSAs computationally feasible, (e.g. Raftery et al., 1997; George and Foster,
2000, who explore the space of models stochastically via a Markov chain Monte
Carlo). The end result is selection over a large subset – but not all – possible
models. The individual models in this subset are given weights that sum to one over
the subset. Coefficients for variables that do not appear in a given model are set
equal to zero. Final coefficient estimates consist of a weighted average of zero and
estimated coefficients.5

The extreme bounds literature of Leamer (1978, 1983, 1985) is a form of
Bayesian analysis but requires a great deal of prior information to be assumed
known. See McAleer et al. (1985) and Breusch (1990) for criticisms.

3. Performance in Finite Samples

Although properties such as consistency and asymptotic efficiency are conceptually
useful, it is unclear how these properties map over to finite sample performance.
There are many examples of estimators with desirable asymptotic properties
being dominated by asymptotically inferior estimators in finite samples (e.g. the
‘shrinkage principle’, Diebold, 2007).
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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Interacting with sample size is the noisiness of the DGP via the variance of the
error term. This introduces two kinds of bias. In all of the MSAs above, a better fit
results in a higher probability of a model being selected, ceteris paribus. Spurious
correlations will enhance a model’s explanatory power, and thus the likelihood that
it is selected. This results in coefficients being biased away from zero. On the other
hand, setting estimated coefficient values to zero when a variable does not appear
in a model biases coefficient estimates towards zero. It is not clear how these two
biases balance out in finite samples.

There are numerous ways to measure the sample performance of MSAs, and the
measure will necessarily depend on the modelling purpose. For example, a model
may be assessed on its out-of-sample forecasting performance if it is intended to
be used for forecasting, but this is a poor measure if the model is being used
to test an economic theory (cf. Clements and Hendry, 2005). Castle et al. (2011)
provide a range of possible performance measures. Some common measures of
MSA performance for in-sample model selection include:

(1) Frequency of retaining the DGP,
(2) Retention rate of relevant variables, denoted Potency,
(3) Retention rate of irrelevant variables, denoted Gauge,
(4) Unconditional mean square error (UMSE) and
(5) Conditional mean square error (CMSE).

Let us suppose we are using Monte Carlo experiments to evaluate the
performance of a given MSA, with m = 1, . . . , M replications. Further, suppose
there are L (=PJ, see equation 1) total candidate variables: K are relevant (i.e. non-
zero β’s in the DGP); L-K are irrelevant; and let the variables be ordered so that
the first K are relevant.6 The first measure, frequency of retaining the DGP, counts
the number of times the MSA chooses the DGP. A deficiency of this measure for
our purposes is that it does not directly assess the accuracy of coefficient estimates.
A further deficiency is that this can be an unreliable measure of MSA performance
when the number of candidate models is large and there is a substantial degree of
DGP noise (McQuarrie and Tsai, 1998).

‘Potency’ and ‘Gauge’ calculate average retention rates over relevant and
irrelevant variables, respectively. Define the retention rate for a given variable i
across all M replications as p̃i: p̃i = 1

M

∑M
m=1 1(β̃i,m �= 0), i = 1, . . . , L, where 1(.)

denotes the indicator function. Then

Potency = 1

K

K∑
i=1

p̃iand (2)

Gauge = 1

L − K

L∑
i=K+1

p̃i (3)

Although potency and gauge are useful measures of the ability of MSAs to keep
and omit the appropriate variables, they also are crude measures of coefficient
accuracy. For example, an MSA may select relevant variables whose coefficients
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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USING MSAS TO OBTAIN RELIABLE COEFFICIENT ESTIMATES 9

are far from the true values, and may omit irrelevant variables whose estimated
values are close to zero.

Denote β̃i,m as the ordinary least squares coefficient estimate associated with
variable i in replication m as determined by a given MSA. For a given variable
coefficient, UMSE and CMSE are calculated as:

UMSEi = 1

M

M∑
m=1

(β̃i,m − βi)
2 (4)

CMSEi =

M∑
m=1

(β̃i,m − βi)2.1(β̃i,m �= 0)

M∑
m=1

1(β̃i,m �= 0)

(5)

where i = 1,2, . . . ,L.7 Note that both UMSEi and CMSEi set β̃i,m = 0 when variable
i is not included in the selected model.

There is some dispute whether CMSEs or UMSEs are preferable. Much of the
literature focuses on UMSE, although consideration of the set of retained variables
is closer to what is observed in empirical applications. MSEs are often used as a
measure of MSA performance because they coincide with a key goal of estimation:
that of producing accurate coefficient estimates. Other performance measures, such
as predictive efficiency, may accept biased estimates of individual coefficients as
long as accurate predictions are produced.8 Another argument in favour of using
UMSE is that it can be decomposed into (1) bias and (2) variance components,
which are in turn related to type I and type II errors. As noted above, UMSEi and
CMSEi are specific for a given MSA and variable i. In general, it is not meaningful
to sum or average UMSEi and CMSEi across variables. This is a problem if our goal
is to have a summary measure of MSA performance. We revisit this problem below

3.1 Type I/Type II Errors

At the heart of MSA performance is the trade-off between type I and type II errors.
Some relevant variables will be mistakenly excluded, and some irrelevant variables
will be mistakenly retained. Note that these outcomes map onto the measures of
Potency and Gauge above. A successful MSA will find the optimal – as defined
by the respective performance measure above – trade-off between the two types of
errors for a given data environment.

IC model selection procedures explicitly define a penalty function that penalizes
the inclusion of additional variables. In turn, the penalty function can be mapped
into an implicit significance level, which measures the rejection frequency per
candidate variable (Campos et al., 2003). Thus, MSAs that allow the user to
explicitly set the significance level, or IC MSAs in which the significance level can
be inferred, can be advantageous when the modeller has a loss function that dictates
their preferred type I/II trade-off, and hence their preferred penalty function.
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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It is straightforward to reduce type II error by using a sufficiently tight penalty
function. If there are 100 irrelevant variables, a penalty function that maps to a
significance level of 1% would result in only 1 irrelevant variable being retained,
on average. Retaining relevant variables depends on the amount of signal relative
to noise. If non-centralities are high, i.e. the variables are highly significant, then a
tight significance level will not be too costly. We illustrate this below.

It follows that, in general, MSAs with tighter penalty functions/lower significance
levels will perform well when there are many irrelevant variables and the
relevant variables have high non-centralities. In contrast, MSAs with looser penalty
functions/higher significance levels will perform better when there are few irrelevant
variables and the non-centralities of the relevant variables are small. Of course,
specific results will depend on the performance measure used.

4. Monte Carlo Comparison of Competing MSAs

4.1 The Model Selection Algorithms

Having discussed in general how the different MSAs relate to each other, we now
engage in an examination of their relative performances in finite samples. We use
UMSE as our measure of MSA performance because (1) it directly assesses the
accuracy of coefficient estimates, (2) it allows interpretation in terms of bias and
variance and (3) it acknowledges that accurate coefficient estimation for irrelevant
variables may also be important to policy makers. As the previous discussion
makes clear, there are virtually an infinite number of possible MSAs. We study
21 different MSAs, selecting representatives from each of the different categories
defined above. These are listed in Table 1, along with a brief description.

The first four MSAs are IC based: AIC, AICc, SIC and SICc. The extra ‘C’
indicates that the respective MSA is the small-sample corrected version of its
namesake. As is clear from Table 1, these all have the general form: ln(σ̂ 2)+
Penalty, and differ only in their penalty functions. The SICc imposes the harshest
penalty for the inclusion of additional variables, followed by the SIC, AICc and
AIC. Each MSA chooses the specification with the smallest IC sample value.

Our procedure for identifying the best model consists of calculating all 2L

possible models.9 Coefficient estimates are taken from the model with the lowest
IC value. If a variable does not appear in that model, then the associated estimate
of that coefficient is set equal to zero.

The next eight MSAs are based on the idea of selecting – not a single best model
– but a ‘portfolio’ of models that are all ‘close’ as measured by their IC values.
Poskitt and Tremayne (1987) derive a measure based on the posterior odds ratio,
�m = exp[− 1

2 (ICmin − ICm)], where ICmin is the minimum IC value among all 2L

models, and ICm is the value of the respective IC in model m, m = 1,2, . . . ,2L.
They suggest forming a portfolio of models all having �m ≤ √

10. Alternatively,
Burnham and Anderson (2004) suggest a threshold �m value of 2.

Our procedure estimates all 2L possible models. The MSAs AIC < 2, AICc < 2,
SIC < 2 and SICc < 2 each construct portfolios of models that have AIC, AICc, SIC
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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USING MSAS TO OBTAIN RELIABLE COEFFICIENT ESTIMATES 13

and SICc values that lie within 2 of the minimum value model. The next four MSAs
(AIC <

√
10, AICc <

√
10, SIC <

√
10 and SICc <

√
10) do the same for models

lying within
√

10 of the respective minimum value model. Coefficient estimates are
set equal to zero for variables that never appear in the portfolio. For variables that
appear at least once in the portfolio of models, the respective coefficient estimates
are calculated as the arithmetic average of all non-zero coefficient estimates.

The next three MSAs use an automated general-to-specific regression algorithm
(AUTO). These are taken from the Autometrics program available in PcGive
(Doornik, 2009a). Autometrics allows researchers to set their preferred significance
level. We select 1% and 5% (AUTO_1% and AUTO_5%), as these are most common
in the applied economics literature. We also allow a variable significance level
that adjusts for the number of observations, with a lower significance level being
used for larger T. We follow Hendry’s suggestion (Hendry, 1995, p. 490) and set
this variable significance level equal to 1.6

T 0.9 · 100% (AUTO_Variable).10 All three
Autometrics MSAs apply bias-correction ex post (Hendry and Krolzig, 2005).11

Next are three FW algorithms. The particular versions that we employ also come
from PcGive and use the same three significance levels as the preceding AUTO
algorithms (FW_1%, FW_5% and FW_Variable). Variables are added to the model
in order of significance, one at a time, until no further significant regressors are
found. If included variables become insignificant as others are added, they are
removed from the model. Both the AUTO and FW algorithms produce a single
best model and assign a coefficient estimate of zero to those variables that are not
retained in the final model.

The next two MSAs are examples, albeit highly simplified, of BMA (Hoeting
et al., 1999). Our procedure estimates all 2L possible models. A composite model is
constructed in which each of the variable coefficients equals a weighted average of
individual estimated coefficients for that variable across models. For a given model,
the weight is ωm = �m∑2L

m=1 �m

, m = 1,2, . . . ,2L, where � is the maximized value of the

log likelihood function for the regression model from which the coefficient estimate
is taken. For the 2L–1 models where the variable is excluded, the coefficient estimate
is set equal to zero. We analyse two versions: (1) LLWeighted_All, which uses
the full set of 2L models to construct weighted average coefficient estimates and
(2) LLWeighted_Selected, which restricts itself to the set of all 2L–1 models where
the given variable appears. Note that in both cases the emphasis is on ‘model
averaging’ rather than ‘Bayesian’, as we do not assign prior subjective values to
the coefficients.

The final MSA (ALLVARS) selects the full set of potential variables for inclusion
in the ‘final model’. As should be apparent, the great disparity in approaches
underlying these MSAs makes it difficult to analytically compare the performance
of all 21 MSAs, and this is all the more true with respect to their performance in
finite samples.

As a result, our analysis turns to Monte Carlo experimentation. Our experiments
are conducted using a simple simulation design in which the DGP is nested.
We assume a static linear model with weakly exogenous, orthogonal regressors,
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14 CASTLE ET AL.

Table 2. Retention Probabilities as a Function of ψ and α (for T = 75).

P(tk ≥ cα|E[tk] = ψ)

ψk α = 50% α = 20% α = 5% α = 1%

1 62.6% 38.5% 16.1% 5.0%
2 90.7% 76.0% 50.3% 26.0%
3 99.0% 95.6% 84.3% 63.9%
4 100% 99.7% 97.8% 91.3%
5 100% 100% 99.9% 99.1%
6 100% 100% 100% 100%

constant parameters and spherical error terms. We recognize that this design is not
representative of general economic data environments. Among other things, many
would argue that it is unrealistic to assume that the DGP lies within the set of
models being evaluated. However, it will serve our purpose of illustrating a number
of key issues associated with the relative performances of MSAs.

4.2 Description of Experiments

The DGP is given by (1), where P = 1 (i.e. no lags), γ = 5, and β j = 1,
∀j = 1, ..., K . x j,t∼IN [0, 1] ∀j , and are fixed both within and across experiments.
εt∼IN [0, σ 2].12 σ 2 is fixed within an experiment, but variable across experiments.
We vary σ 2 across experiments depending on the value we desire for the non-
centrality parameter, ψ ≡ E[t], which is a measure of DGP noise. Specifically, σ 2

is adjusted to produce target values of ψ according to the relationship: 13

σ 2 = T

ψ2
(6)

Note that ψ is independent of K and L for a given sample size, and represents
the expected value of the sample t-statistic for any of the relevant variables. Our
experiments let ψ range from 1 to 6.

Table 2 identifies the relationship between ψ , our measure of DGP noise, and the
probability of retaining a relevant variable using a single t-test, when the retention
decision is determined by the significance level, α. A range of non-centralities and
significance levels are reported. For example, a 5% significance level will result in
a relevant variable with a non-centrality of 1 being retained 16% of the time. This
increases to 50% for ψ = 2 and 100% for ψ = 6.14 Although the values vary by
T , they change only slightly even when the sample size becomes very large.

Our experiments are designed to allow four factors to vary across experiments:
K, L, T and ψ .15 MSAs that tend to underfit (overfit) will perform relatively well
when there are few (many) relevant variables in the DGP. To illustrate this for given
L, we run L consecutive experiments where K starts at 1 and progresses through
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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USING MSAS TO OBTAIN RELIABLE COEFFICIENT ESTIMATES 15

L. We set L equal to 5, 10 and 15. Although larger values would be desirable,
we are limited by computational constraints because many of the MSAs require
estimation of all possible 2L models. As some MSAs have established asymptotic
properties, we show the effect of increasing sample size by letting T take on the
values 75, 150, 500 and 1500. Table A1 in the Appendix summarizes the 360
experiments.

As discussed above, we use UMSE of the coefficient estimates to compare MSA
performance.16 Each experiment consists of 1000 simulated data sets/replications
r. For each replication of each experiment, and for each MSA, we produce a set of
L coefficient estimates, (β̂MSA

1,r , β̂
MSA
2,r ,..., β̂

MSA
L,r ).17 We aggregate over replications to

calculate a UMSE value for each coefficient and for each MSA in that experiment:

UMSEMSA
i =

∑1000
r=1 (β̂MSA

i,r −βi )2

1000 , i = 1,2, . . . , L.
It is easily seen that the UMSEi cannot generally be aggregated across coefficients

within an experiment because they depend on the nominal sizes of the coefficients.
And they cannot be aggregated across experiments because they depend on the
variance of the error term. Accordingly, we assign a ranking from 1 to 21 for each
UMSEi, with the MSA producing the lowest UMSE for that coefficient receiving
a rank of 1, the MSA with the next smallest UMSE receiving a rank of 2, and
so on. These rankings are then averaged across all L coefficients to produce an
overall MSA ranking for that experiment. For example, if L = 5 and a given
MSA has individual coefficient rankings {10, 10, 12, 13, 10}, this MSA would
receive an average rank of 11 for that experiment.18 We then compare experiment-
specific, average UMSE rankings of MSAs to illustrate how they vary across K,L,T
and ψ .

5. Results

Table 3 summarizes the results over all experiments. The columns report mean,
median, minimum and maximum rankings for all 360 experiments in ascending
order, with the best MSA (as measured by mean rank) listed first.

In terms of overall performance, the top three MSAs, as measured by both
mean and median rankings, are the three Autometrics MSAs. The best of the
three, AUTO_5%, has an average ranking a full rank better than its next best,
non-Autometrics competitor. Portfolio MSAs sometimes perform better than their
non-portfolio analogues (cf. AICc <

√
10 and AICc < 2 versus AICc) and

sometimes worse (cf. SIC versus SIC <
√

10 and SIC < 2). Model averaging
over all possible models (LLWeighted_All) is generally superior in our experiments
to model averaging over only those models in which the respective variable
appears (LLWeighted_Selected). That being said, there are data environments where
LLWeighted_Selected does better. The worst-performing MSA is ALLVARS. This
highlights the fact it is generally not a good idea – as a general strategy – to include
all potential variables in a regression specification.

The wide range of minimum and maximum values indicates that no single MSA
always performs best, or worst. For example, while ALLVARS generally performs
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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Table 3. Comparison of MSA Performance: All Experiments (Sorted By Mean UMSE
Rank in Ascending Order).

MSA Mean Median Minimum Maximum

AUTO_5% 9.4 9.4 3.7 17.6
AUTO_Variable 9.7 9.2 1.7 21.0
AUTO_1% 9.9 9.2 1.1 21.0
FW_1% 10.6 9.9 2.3 21.0
SIC 10.6 10.6 4.7 18.1
FW_Variable 10.8 9.8 3.4 21.0
SICc 10.9 10.3 4.0 19.2
SIC < 2 10.9 10.8 5.8 18.4
FW_5% 11.0 10.7 7.3 20.2
SICc < 2 11.1 11.0 5.4 18.8
AICc <

√
10 11.1 11.2 3.4 18.5

AICc < 2 11.1 11.5 3.3 15.6
SIC <

√
10 11.2 11.0 6.7 20.0

AIC < 2 11.2 11.8 2.6 16.9
LLWeighted_All 11.2 11.9 1.0 16.6
SICc <

√
10 11.3 11.1 5.6 20.1

AICc 11.3 11.2 3.7 19.2
AIC <

√
10 11.4 11.8 3.0 18.5

AIC 11.6 12.1 3.1 19.0
LLWeighted_Selected 11.8 12.5 1.9 19.7
ALLVARS 12.7 14.0 1.0 20.9

poorly, it does better than any other MSA when all the candidate variables are
relevant (K = L) because the estimated model is the DGP for this specification.19

5.1 Identifying the Determinants of Relative Performance of MSAs

As noted above, measures of overall performance mask substantial differences
between MSAs across different data environments. Table 4 illustrates the important
role that the ratio (K/L) plays in determining MSA performance. It compares
rankings for SIC and AIC as K changes, holding L, T and ψ constant (here set
equal to L = 10, T = 75 and ψ = 2). Columns 1 and 4 report the average rank (over
the 10 coefficients) for each of the respective experiments (where each experiment
consists of 1000 replications). Columns 2/3 and 5/6 decompose these into average
ranks over irrelevant and relevant variables.

When the number of relevant variables is relatively small, SIC outperforms AIC.
As (K/L) increases, SIC monotonically loses ground to AIC. When K = 5, the
relative rankings of the two MSAs switch positions, with AIC outperforming SIC.
Note that average performance within the sets of irrelevant and relevant variables
is little affected by increases in (K/L).
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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Table 4. Experimental Results for the Case: L = 10, T = 75, ψ = 2.

Mean Ranking of SIC Algorithm
Over . . .

Mean Ranking of AIC Algorithm
Over . . .

Number of All Irrelevant Relevant All Irrelevant Relevant
Relevant Variables Variables Variables Variables Variables Variables
Variables (K) (1) (2) (3) (4) (5) (6)

1 8.0 7.1 16.0 13.6 14.1 9.0
2 8.9 7.0 16.5 13.2 14.3 9.0
3 9.9 7.1 16.3 12.7 14.3 9.0
4 10.7 7.0 16.3 12.1 14.2 9.0
5 11.7 7.4 16.0 11.4 14.2 8.6
6 12.7 7.5 16.2 10.6 13.8 8.5
7 13.5 7.3 16.1 10.0 14.3 8.1
8 14.6 8.0 16.3 9.4 15.0 8.0
9 15.4 8.0 16.2 8.6 14.0 8.0

10 16.2 – 16.2 8.0 – 8.0

SIC outperforms AIC on irrelevant variables (cf. columns 2 and 5). AIC
outperforms SIC on relevant variables (cf. columns 3 and 6). The switch in
relative performance occurs because of changes in the weights of these two
components. When there are many irrelevant variables and few relevant variables,
SIC’s advantage on the former causes its overall performance to dominate AIC. As
K increases, AIC’s advantage on relevant variables allows it to overtake SIC.

The explanation for SIC’s advantage (disadvantage) on irrelevant (relevant)
variables is due to the penalty function, because this is the only characteristic
that distinguishes the two MSAs. SIC has a larger penalty function than AIC and
therefore selects, on average, fewer irrelevant variables. This will result in smaller
bias for the SIC specification, because the estimated coefficients for selected,
irrelevant variables from the AIC MSA will suffer from pre-testing bias. The SIC
estimates will also be characterized by lower variance, because omitted variables
are assigned coefficient values of 0. Of course, SIC also admits fewer relevant
variables. This biases coefficient estimates of the relevant variables because their
population values are non-zero. Therefore, SIC’s larger penalty function harms its
performance with respect to relevant variables.

Figure 1 illustrates the principle. As noted above, the four IC MSAs
can be strictly ordered in terms of the size of their penalty functions:
SICc > SIC > AICc > AIC. Figure 1 reports the performance results for all 180
experiments where T = 75 (cf. Table A1). The vertical axes report MSA rankings
(from 1 to 21). The horizontal axes are ordered by K (from 1 to L). There are three
columns of figures, corresponding to L = 5, 10 and 15; and six rows for ψ from
1 to 6 (with DGP noise greatest for smallest ψ). The four boldfaced lines indicate
the rankings for SICc/SIC/AICc/AIC, with the dotted lines becoming increasingly
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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18 CASTLE ET AL.

Figure 1. Rankings of MSAs as a Function of K, ψ and L (T = 75).

solid for IC with larger penalty functions. The performances of the other seventeen
MSAs are indicated by dotted, non-boldfaced lines. Visual inspection indicates that,
generally, the MSAs with larger penalty functions do relatively better (have lower
rank) when (K/L) is small; and relatively worse when (K/L) is large, except when
ψ = 1.

Figure 1 also highlights two other results. First, a similar relationship seems
to be at work with respect to many of the other MSAs. Second, it is clear that
other factors, such as DGP noise, as represented by ψ , also affect relative MSA
performance.

We pursue these observations by regressing average experimental ranking as a
function of the share of relevant variables (K/L), the degree of DGP noise (ψ) and
the number of observations in the data set (T). We estimate separate regressions
for each MSA, with 360 observations, one for each experiment.

Average experimental rankingM S A
i = β0 + β1 (K/L)i + β2ψi + β3Ti + εi (7)

The results are reported in Table 5. Confirming our visual inspection of Figure 1,
we see that the variable (K/L) is statistically significant in 20 of the 21 regressions,
Journal of Economic Surveys (2011) Vol. 00, No. 0, pp. 1–33
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Figure 1. Continued.

indicating that the share of relevant variables is an important determinant of relative
MSA performance, with the effect being evenly split (not surprisingly) as to whether
(K/L) positively or negatively affects relative performance. DGP noise (ψ) is also
an important determinant, being significant in 19 of the 21 regressions.

Number of observations in the data set (T) is significant in 10 of the 21
regressions, but the estimated effects are relatively small. The largest estimated
effect in absolute value ( = −0.0013 for the ALLVARS MSA), implies that
increasing sample size by a 1000 observations improves its relative rank by a
little over 1. In contrast, both (K/L) and (ψ) are estimated to have large impacts.
Using the average of the absolute values of the coefficients in Table 5, we estimate
that increasing the share of relevant variables by 50% causes a 4.6 change in
relative rankings, on average. Increasing DGP noise by three causes a 1.8 change
in relative rankings, on average.
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Table 5. The Relationship Between MSA Ranking and (K/L), ψ and T.

MSA (K/L) ψ T R-squared

AIC −5.849 −0.4606 −0.0006 0.425
(−13.39) (−5.27) (−3.09)

AICc −3.074 −0.6635 −0.0004 0.378
(−8.12) (−8.86) (−2.37)

SIC 7.730 −0.6402 −0.0002 0.715
(24.84) (−11.05) (−1.29)

SICc 11.06 −0.4071 −0.0004 0.698
(26.75) (−4.72) (−1.76)

AIC < 2 −11.32 0.0065 −0.0003 0.747
(−31.16) (0.08) (−1.99)

AICc < 2 −8.747 −0.2002 −0.0003 0.716
(−29.23) (−3.16) (−2.42)

SIC < 2 3.056 −0.8734 0.0002 0.671
(11.87) (−18.74) (1.63)

SICc < 2 6.245 −0.7500 −0.0001 0.737
(23.69) (−14.37) (−0.55)

AIC <
√

10 −14.28 0.3083 −0.0001 0.867
(−48.69) (4.91) (−0.85)

AICc <
√

10 −12.35 0.2120 0.0002 0.871
(−48.14) (4.05) (1.91)

SIC <
√

10 −0.4820 −0.7342 0.0006 0.445
(−1.49) (−12.84) (3.88)

SICc <
√

10 2.697 −0.7382 0.0004 0.538
(8.99) (−13.56) (3.59)

AUTO_1% 15.04 1.133 0.0004 0.726
(25.74) (9.93) (2.12)

AUTO_5% 7.328 0.8267 0.0010 0.634
(18.45) (11.13) (6.18)

AUTO_Variable 13.66 1.036 0.0008 0.725
(25.02) (10.13) (3.07)

FW_1% 13.93 0.0596 0.0002 0.640
(23.03) (0.50) (1.17)

FW_5% 3.910 −0.7399 0.0006 0.492
(10.31) (−12.50) (2.92)

FW_Variable 11.98 −0.2686 −0.0001 0.671
(24.63) (−2.92) (−0.37)

LLWeighted_All −7.444 1.363 −0.0001 0.833
(−22.80) (24.23) (−0.34)

LLWeighted_Selected −15.42 0.8158 −0.0007 0.855
(−40.97) (11.37) (−5.14)

ALLVARS −17.67 0.7145 −0.0013 0.7784
(−32.55) (6.69) (−6.80)

Note: The coefficients in the table are derived from ordinary least squares estimation of the regression
equation, Yi = β0 + β1(K/.L)i + β2ψi + β3Ti + εi, i = 1,2, . . . ,360, where the dependent variable is
the experiment-specific, rank value for the respective MSA. White-adjusted t-statistics are reported
in parentheses below the respective coefficient estimates. We emphasize that each MSA equation was
estimated separately, and that no tests for congruency were undertaken for the respective regression
equations.
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The simple specification of equation (8) will fail to capture complex relationships
that may exist between these variables and relative performance. Even so, the three
variables are able to explain an impressive amount of the variation in relative
rankings. The average R-squared across the 21 regressions of Table 5 is 0.674, and
the median value 0.715.

Although the results from Table 3 make it clear that no single MSA will dominate
in all data environments, the results from Table 5 suggest that there may be certain
data environments where one or more MSAs can consistently outperform the others.
This raises the possibility that, for practical purposes – that is, for data environments
where model selection is likely to be of greatest value to researchers – it may yet
be possible to make MSA recommendations.

We can illustrate this through our experiments. For example, one might argue
that the data environments where MSAs are most likely to be valuable are where:

(1) The researcher believes, on the basis of a priori judgment, that there are many
more candidate than relevant variables, making it difficult to decide which
ones to select.

(2) There is a substantial degree of DGP noise, so that many variables are on the
edge of statistical significance.

In the context of our experiments, let us map these two conditions to (1) K
L ≤ 0.5

and (2) ψ ≤ 2. Table 6 analyses MSA performance for the 58 experiments where
(1) half or less of the candidate variables are relevant and (2) the sample t-statistics
for the relevant variables have an expected value of either 1 or 2. Panel A repeats
the analysis of Table 3 for the restricted set of 58 experiments. As before, MSAs
are ranked in ascending order, with the best performers listed first. The three
Autometrics MSAs are (again) the top performers, but this time AUTO_1% and
AUTO_Variable are virtually tied for best. Substantially further back (over two full
ranks higher), are the two FW algorithms, FW_1% and FW_Variable. Still further
back are the IC MSAs.

Another look at the superior performance of the Autometrics MSAs is provided
by panel B of Table 6. These results report the frequency at which the respective
Autometrics MSAs perform as well or better than all other MSAs – where ‘as well
or better’ means that the respective MSA has a rank equal to or lower than all other,
non-Autometrics MSAs. AUTO_1% did at least as well as all other non-Autometrics
MSAs in 54 out of 58 experiments (93.1%). AUTO_Variable did at least as well in
53 of the 58 experiments (91.4%).

These results are suggestive that it may be possible to identify MSAs that
dominate in particular data environments. Admittedly, our experimental results
assume a rarefied data environment unlikely to be encountered in actual empirical
work. Further research in more general data environments could prove useful. The
last section of our review discusses some issues that complicate the task that MSAs
face in choosing the best model/models.
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Table 6. Comparison of MSA Performance: Experiments where K
L ≤ 0.5 and ψ ≤ 2

(Sorted in Ascending Order of Mean UMSE Rank).

A. Comparison of UMSE Ranks
MSA Mean Median Minimum Maximum

AUTO_1% 4.6 4.0 1.1 10.6
AUTO_Variable 4.8 3.8 1.7 10.6
AUTO_5% 6.4 6.3 3.7 9.3
FW_1% 7.0 7.0 2.7 12.4
FW_Variable 7.9 7.9 3.4 12.4
SICc 8.5 8.0 5.0 12.3
SIC 9.2 9.2 5.2 12.1
SICc < 2 10.6 10.4 8.2 14.0
FW_5% 10.9 10.7 8.1 16.3
SIC < 2 11.1 10.8 8.6 14.5
LLWeighted_All 11.6 11.8 7.8 14.2
SICc <

√
10 11.9 11.5 10.5 15.2

SIC <
√

10 12.3 12.1 10.9 15.3
AICc 12.7 12.8 10.8 15.4
AIC 13.5 13.6 10.9 16.5
AICc < 2 13.7 14.0 11.0 15.6
AIC < 2 14.0 14.5 11.0 16.5
AICc <

√
10 14.2 14.2 10.9 18.3

AIC <
√

10 14.8 14.8 10.9 18.1
LLWeighted_Selected 14.9 15.0 10.5 19.2
ALLVARS 16.3 16.8 10.3 20.4

B. Percentage of Experiments where Autometrics MSAs Perform as Well or Better
Than All Other MSAs

MSA Percentage

AUTO_1% 93.1
AUTO_Variable 91.4
AUTO_5% 46.6

Note: There are a total of 58 experiments where ψ ≤ 2and K
L ≤ 0.5.

6. Complications Facing MSAs

6.1 Collinearity

If the L variables were perfectly orthogonal in the sample, many MSAs would
perform equally well. Eliminating or adding variables would have no impact on
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the estimated coefficients of the other variables in the model. Castle et al. (2011)
describe the optimal MSA algorithm in this context, where a one-cut decision rule
is all that is needed.

Collinearity results in disrupted information attribution, which will increase null
rejection frequencies and reduce non-null rejection frequencies. This will affect
the variables chosen and the associated coefficient estimates. There is no simple
solution to collinearity when variables are highly correlated, such as when variables
are alternative measures of the same phenomena. However, there is reason to
believe that some MSAs are more likely to perform poorly than others in the
face of collinearity. MSAs that do not estimate all possible models are particularly
vulnerable when data are collinear. For example, two regressors that are negatively
correlated but must be included jointly to be significant would not be detected
under a FW MSA.

Because collinearity is not invariant under linear transformations, linear models,
which can be defined by various isomorphic representations, can deliver very
different inter-correlations. As collinearity is a property of the parameterization
of the model, and not the variables per se, re-parameterizing the model to a more
orthogonal transformation can improve the performance of the MSA, for example,
by taking differences.

Ridge regression is often seen as a solution to collinearity (Hoerl and Kennard,
1970a, 1970b). By allowing for some bias in the estimation, the variance of the
estimated model coefficients is reduced. However, a ridge constant is needed to
determine the bias/variance trade-off, and this requires a priori knowledge of the
unknown coefficients.

High levels of correlation are often judged using the Variance Inflation Factor,
which is the inverse of tolerance. Principal components have been suggested as a
solution to high levels of collinearity, which also enables a dimension reduction.
However, if the objective of model selection is to identify reliable coefficients to
guide resource allocations by policy makers, principal components would not be a
viable method.

6.2 Non-Spherical Errors

Non-spherical errors are generally thought of as indicating model mis-specification
relative to the DGP, and can be interpreted as omitted variables, incorrect functional
form, omitted dynamics, etc. Systematic components of the error term should
properly enter the DGP as explanatory variables.20 The theory of reduction (Hendry,
1995, chapter 9) describes the operations implicitly applied to the DGP to obtain the
local DGP (LDGP, the generating process in the space of variables under analysis:
see, for example, Hendry, 2009). The DGP is a highly complex joint distribution
but can be simplified to the LDGP as long as there is no loss of information
when applying the reductions, which is established by ensuring the LDGP satisfies
properties such as constant parameters and innovation errors. Thus, a model that
aims to approximate the LDGP should also have innovation errors. This is the
concept of congruency.
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The relative importance of congruency will depend on the objectives of the MSA.
If the objective is to obtain the best forecasts, then congruency is not essential. If,
on the other hand, the objective is to locate the best approximation to the DGP then
not requiring congruency will imply that mis-specified models could be retained,
which must be a poor approximation to the DGP as the unmodelled residuals
contain aspects of the DGP.

The Autometrics MSAs are the only automatic algorithms that test for congruency
during the selection procedure by undertaking a range of residual-based diagnostic
tests, ensuring the overall test significance level is controlled. Other MSAs do
not ensure congruency at any stage. This raises the likelihood that a mis-specified
model could be selected, see Bontemps and Mizon (2003).

6.3 Dimensionality Constraints

Unfortunately, in economics, the number of candidate variables L is likely
to be large due to uncertainty over relevant variables, lags and nonlinear
transformations.21 The 2L models quickly become a binding constraint for MSAs
that search over all models, due either to insufficient computing power or
insufficient observations, or both. Ad hoc reductions in the number of models can be
imposed to address these problems. This can be done, for example, by eliminating
long lags, or variables with small t-statistics. However, this is unsatisfying because it
removes large sets of models from consideration by the model selection procedure.
This is an unavoidable cost of MSAs that compute all possible models.

In this sense, there is a computational advantage for MSAs that do not compute
all possible models, such as stepwise MSAs, or Autometrics. Autometrics handles
cases where there are more variables than observations by undertaking expanding
and contracting searches so that the choice of L candidate variables need not be
constrained by the number of observations T (Doornik, 2009b).

6.4 Pre-Testing

Applying model selection is known as pre-testing, and the process of model
selection affects the validity of inference in finite samples. Pre-testing has been
one of the main criticisms of model selection, see, for example, Judge and Bock
(1978). Asymptotic distributions are unaltered by consistent model selection so
asymptotic inferences are valid. However, in finite samples the distribution of
estimators and test statistics can differ significantly from their limit distributions,
see, for example, Leeb and Pötscher (2005).

Hendry and Krolzig (2003) distinguish between costs of inference and costs of
search. Costs of inference are the costs associated with estimating the DGP. Even
if the model is the DGP, estimation of a relevant variable may produce a low
t-statistic, leading to the conclusion that the variable is ‘insignificant’. This has
nothing to do with model selection per se. No selection has taken place but the
coefficient estimates of the model are interpreted as being insignificant according
to a specified significance level.
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The costs of search refer to the costs associated with searching for a specific
model over and above the inevitable costs of inference. It is useful to separate
the two costs because a measure of search costs will be contaminated if the DGP
variables have low signal-to-noise ratios and would not be interpreted as significant
even with no selection. Many evaluations of MSAs do not distinguish between
these costs which result in misinterpreting the performance of MSAs. Specifically,
an MSA may be concluded to perform poorly because it omits many relevant
variables, even though these variables would be concluded to be insignificant if the
DGP were the only model estimated.

Little can be done to correct for the omission of relevant variables due to costs
of search and costs of inference. However, it may be possible to correct pre-test
bias for selected variables depending on the specific search procedures of a given
MSA. For example, Autometrics in Version 14 of PcGive automatically bias-corrects
estimated coefficients after model selection.

6.5 Endogeneity

Most MSAs rely on weak exogeneity of regressors, unless the instrument set
is known. Some MSAs can be applied to systems of equations, enabling tests
of weak exogeneity (e.g. Krolzig, 2003). Key difficulties include the validity
and significance of instrumental variables and identification of the simultaneous
equations. In the absence of that knowledge, endogeneity can cause MSAs to
produce biased and inconsistent coefficient estimates.

6.6 Nonlinearity

Economic relationships may be nonlinear, and a proliferation of nonlinear
econometric models supports this view, ranging from nonlinear ARMA and bilinear
models to random coefficient models, regime-switching models and artificial
neural networks. MSAs that focus on variable selection often postulate a linear
model. If this is a poor approximation, the selected model will not capture
the key characteristics of the DGP. However, models that are nonlinear in the
parameters can often be reparameterized to models that linear in parameters
but nonlinear in variables. There are numerous nonlinear approximating classes
including polynomials, orthogonal polynomials, Fourier series, asymptotic series
and confluent hypergeometric functions. One problem with nonlinear functions is
that they can generate substantial collinearity, an issue we identify above. Another
problem is that generalizations can quickly produce a number of candidate variables
that exceed the number of observations, another issue we discuss above.

7. Conclusion

This review endeavours to survey a number of common MSAs, discuss how they
relate to each other, and identify factors that explain their relative performances.
We categorize MSAs into four broad classes. The first class consists of AIC, SIC
and related IC MSAs. These select a single best model based upon a search of all
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possible models, with the best model being the one with the lowest IC value. The
final model determines the value of the estimated coefficient. If the variable appears
in the final model, the MSA assigns an estimated value equal to the estimated value
of the corresponding coefficient in the final, best equation. If the variable does not
appear in the final model, the MSA assigns an estimated coefficient value equal to
zero.

The second class also uses IC criteria, but selects a portfolio of models, rather
than a single best model. The range of the models included in the portfolio is
derived from the sampling behaviour of the sample IC value. The literature is less
clear on how the individual models in the portfolio should be combined. This class
of models also searches over all possible models.

We denote the third class of models as ‘path reduction’ MSAs because they have
the property that they do not search over all possible paths of the regression tree.
Backwards- and forwards-stepwise MSAs fit into this class. ‘Branch and bound’
MSAs also do not search over all possible paths of the regression tree, but are still
able to obtain the same outcome as MSAs that do. They do this by judiciously
partitioning variables into various subsets, and then searching over these reduced
subsets. Another type of path reduction MSAs is the general-to-specific modelling
approach of the LSE school, of which Autometrics is the most modern version. This
approach is distinguished by its emphasis on congruency and the use of multi-path
searches to select variables based on significance rather than goodness of fit.

The final class of MSAs are BMA models. These MSAs, in principle, estimate
all possible models and weight individual coefficients from a given model by the
posterior probability that that model is ‘correct’. These are then summed to produce
estimated coefficients that are weighted averages of the estimated coefficients
from individual models. If a variable does not appear in a given model, then
its corresponding coefficient estimate is set equal to zero. In practice, sophisticated
sampling algorithms are used to select a large subset from the full set of all possible
models.

In order to illustrate the factors that affect relative MSA performance, we perform
a large number of Monte Carlo experiments. The experiments vary over (1) the
number of relevant variables (K); (2) the total number of candidate variables (L);
(3) the degree of DGP noise, as measured by the non-centrality parameter (ψ)
and (4) the number of observations in the data set, T . Twenty-one different MSAs
are compared, representing a variety of approaches. The experiments illustrate the
importance of (1) the ratio of relevant to total variables (K/L) and (2) DGP noise,
as measured by the non-centrality parameter, as key determinants of relative MSA
performance.

Our comparison of different MSAs highlights the fact that MSAs differ in the
weights they place on type I and type II errors. MSAs with loose criteria place
more weight on type II errors and are less concerned with type I errors, retaining
irrelevant variables with a very high probability. MSAs with tight criteria place a
lot of weight on type I errors, controlling the null-rejection frequency at a cost of
failing to retain relevant variables when they have low non-centralities. It is this
trade-off that is at the heart of MSA performance.
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Our experiments confirm that no MSA does best in all circumstances. This
follows directly from the fact that different MSAs place different weights on
type I and type II errors. These weights will be advantageous or disadvantageous
depending on the data environment. Even the worst MSA in terms of overall
performance – the strategy of including all candidate variables – sometimes
performs best (viz., when all candidate variables are relevant). Although no single
MSA consistently dominates in all data environments, our experiments indicate that
Autometrics does especially well when the ratio of relevant to irrelevant variables is
less than 0.5, and the non-centrality parameter is equal to or less than 2. This case
has particular interest because these conditions arguably define data environments
where MSAs are likely to be most valuable to researchers. However, additional
experimentation is required to determine whether these results are valid beyond the
relatively simple testing environments we simulate here.

Finally, we discuss a number of further issues associated with the challenge
of using MSAs to produce reliable coefficient estimates. These include: (1)
collinearity, (2) non-spherical errors, (3) dimensionality constraints, (4) pre-testing,
(5) endogeneity and (6) nonlinearity.

MSAs hold much promise to improve upon the method of ad hoc specification
searches currently employed by most practitioners of empirical research. However,
as this review makes clear, the choice of which MSA to use is not clear cut. Each
has strengths and weaknesses that make it attractive in some, but not all, data
environments. Additional research needs to delineate when, and which, MSAs may
provide a useful alternative to current practice.
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Notes

1. See Leeb and Pötscher (2003), for a case in which the DGP is not consistently
estimated.

2. With an appropriate adjustment in notation, equation (1) could be modified to include
lagged values of the dependent variable as explanatory variables, as well as allowing
the explanatory variables to have different lag lengths, Pj.

3. Although our analysis assumes the researcher is interested in all the β’s, it is
straightforward to modify the analysis for when a given subset of the β’s is of
interest.

4. Although the authors do not list the fourth case, it should be noted that when
10 < �m ≤ 100 the alternative model can again be discarded as non-competing.

5. There are other issues associated with BMA MSAs. One of these concerns the
specification of the prior distribution. Magnus et al. (2010), propose an alternative
to BMA that they call ‘weighted average least squares’, which utilizes the Laplace
estimator. They claim two advantages for weighted average least squares over BMA:
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(1) it adopts a more intuitive prior specification of parameter ignorance, and (2) it
requires far less computational time, being linear, rather than exponential, in the
number of regressors.

6. To ease notation, and without loss of generality, we treat lags of regressors as
separate variables.

7. When a given variable i is not selected in any of the m replications
(
∑M

m=1 1(β̃i,m �= 0) = 0), it is conventional to set CMSE = β2
i .

8. The difference between these two measures can be considerable when there is
substantial multicollinearity. When this occurs, omitted variable bias may cause
coefficients to differ substantially from their population values with little cost in
predictive accuracy.

9. The intercept, γ , is fixed to enter all models.
10. 1.6

T 0.9 · 100% ∼= 5% when T = 47, and 1.6
T 0.9 · 100% ∼= 1% when T = 281.

11. Selection results in ‘pre-test’ biases (Judge and Bock, 1978). Hendry and Krolzig
(2005) propose a bias correction procedure based on a truncated normal distribution
for the post-selection coefficient estimates which can be easily implemented in a
general-to-specific framework. Castle et al. (2011) motivate why bias correction is
an integral aspect of the Autometrics algorithm, and the bias correction will be
available in Version 14.

12. Even though the x’s are orthogonal in the DGP, they will display non-zero
correlations in the sample. Although this may affect relative MSA performance
in any given experiment, it should not affect our cross-experiment results because
the associated biases will differ as L and T are varied across experiments. A fuller
examination of the role of collinearity on relative MSA performance is beyond the
scope of this survey.

13. A t-test of H0:β j = 0 is given by tj = β̂j

σβ̂j
. If the xj’s are i.i.d., then σ 2

β̂ j
= σ 2

T σ 2
x j

. It

follows that ψ j = β j√
σ 2/.T σ 2

x j

. In our experimental design, β j = 1 and σ 2
x j

= 1.

14. The power to reject the null hypothesis H0 : β j = 0 can be calculated as a function of
ψ and α by P(t ≥ cα|E[t] = ψ) ≈ P(t − ψ ≥ cα − ψ |H0), where cα is the critical
value for a given significance level, α. The associated retention rates are largely
independent of T , except to the extent that T affects the critical value, cα . Table A1
records powers for a single t-test for different values of ψ and α when T = 75.

15. See McQuarrie and Tsai (1998) for the importance of ‘signal-to-noise’ ratio as a
determinant of MSA performance for IC algorithms.

16. Earlier analyses also compared MSA performance based on mean absolute
deviations. We found little difference between these two performance measures
and thus only report the UMSE results.

17. The intercept is omitted in the calculations as it is imposed in the selected model
for all MSAs.

18. Ties were handled as follows. Let the MSAs be ranked in ascending order, MSA1,
MSA2, . . . ,MSAj, MSAj+1, . . . , MSAj+m, . . . , MSA21; and suppose MSAj+1 to MSAj+m

are tied. Each of these receive rank
∑m

i=1 (j + i)/m.
19. The median ranking for ALLVARS over the 36 experiments where K = L is 1.20.

The next closest MSA has a median rank of 3.15.
20. Not everyone agrees that the DGP itself will necessarily have spherical errors. For

example, Granger (2005, p. 5) argues that homoskedasticity need not be a necessary
feature of the errors in a model for conditional expectations.
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21. In our simulations the maximum number of regressors considered was L = 15,
which equates to 32,768 possible models. Some of our individual experiments took
more than a week to run on high-powered laptop computers.
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